Multifunctional programmable weighing controller

DS822-A8MTF (AX00)

operation instruction

(Chinese version V1.1.2)

Hangzhou dingsong automatic control equipment co., Itd

Catalog

2.1 Installation Dimension Drawing of Host	I. Introduction	1
III. Interface Layout of Host and Accessories	2.1 Installation Dimension Drawing of Host	3
3.1 Interface layout of instrument host	2.2 Installation dimension drawing of display panel	3
3.2 Display panel function layout	III. Interface Layout of Host and Accessories	4
IV. Connection method of instrument port	3.1 Interface layout of instrument host	4
4.1 Connection method of common switch input port	3.2 Display panel function layout	5
4.2 Connection method of switch output port	IV. Connection method of instrument port	6
4.3 The transistor OC gate is connected to the large screen display	4.1 Connection method of common switch input port	6
4.4 Connection method of load cell	4.2 Connection method of switch output port	7
4.5 Connection method of communication interface	4.3 The transistor OC gate is connected to the large screen display	7
V. Parameter setting	4.4 Connection method of load cell	8
5.1 Function and operation of setting buttons on the display panel	4.5 Connection method of communication interface	8
5.2 Introduction of instrument parameters	V. Parameter setting	9
5.3 Password control and permitted operation items	5.1 Function and operation of setting buttons on the display panel	9
5.4 Operation steps of password login	5.2 Introduction of instrument parameters	11
5.5 F parameter setting and lookup table	5.3 Password control and permitted operation items	11
5.5 P parameter setting	5.4 Operation steps of password login	. 12
VI. Weighing and calibration of instruments	5.5 F parameter setting and lookup table	. 13
6.1 Calibration, correction of angular difference and axial difference, and sensor number 17 6.2 Calculate the calibration method and check the calibration coefficient	5.5 P parameter setting	. 16
6.2 Calculate the calibration method and check the calibration coefficient	VI. Weighing and calibration of instruments	. 17
VII. Setting of other working parameters217.1 Parameter setting and protocol of full-function communication port217.2 OC door outlet OUTB is used as the outlet of large screen227.3 Modify the login password227.4 Settings of panel display content237.5 Timed shutdown function247.6 Input and output position adjustment25VIII. Instrument testing and other operations278.1 Instrument test function278.2 Instrument power-on self-test and fault display code278.3 The instrument weight is set to zero and the total accumulated quantity is cleared298.4 Start and Exit of Process308.5 Restore factory settings30IX. Appendix32Appendix 1 Top Loose Communication Protocol32Appendix 2 Command of Continuous Sending Mode40	6.1 Calibration, correction of angular difference and axial difference, and sensor number	17
7.1 Parameter setting and protocol of full-function communication port	6.2 Calculate the calibration method and check the calibration coefficient	. 19
7.2 OC door outlet OUTB is used as the outlet of large screen.227.3 Modify the login password.227.4 Settings of panel display content.237.5 Timed shutdown function.247.6 Input and output position adjustment.25VIII. Instrument testing and other operations.278.1 Instrument test function.278.2 Instrument power-on self-test and fault display code.278.3 The instrument weight is set to zero and the total accumulated quantity is cleared.298.4 Start and Exit of Process.308.5 Restore factory settings.30IX. Appendix32Appendix 1 Top Loose Communication Protocol.32Appendix 2 Command of Continuous Sending Mode.40	VII. Setting of other working parameters	. 21
7.3 Modify the login password	7.1 Parameter setting and protocol of full-function communication port	. 21
7.4 Settings of panel display content237.5 Timed shutdown function247.6 Input and output position adjustment25VIII. Instrument testing and other operations278.1 Instrument test function278.2 Instrument power-on self-test and fault display code278.3 The instrument weight is set to zero and the total accumulated quantity is cleared298.4 Start and Exit of Process308.5 Restore factory settings30IX. Appendix32Appendix 1 Top Loose Communication Protocol32Appendix 2 Command of Continuous Sending Mode40	7.2 OC door outlet OUTB is used as the outlet of large screen	. 22
7.4 Settings of panel display content237.5 Timed shutdown function247.6 Input and output position adjustment25VIII. Instrument testing and other operations278.1 Instrument test function278.2 Instrument power-on self-test and fault display code278.3 The instrument weight is set to zero and the total accumulated quantity is cleared298.4 Start and Exit of Process308.5 Restore factory settings30IX. Appendix32Appendix 1 Top Loose Communication Protocol32Appendix 2 Command of Continuous Sending Mode40	7.3 Modify the login password	. 22
7.6 Input and output position adjustment		
VIII. Instrument testing and other operations 27 8.1 Instrument test function 27 8.2 Instrument power-on self-test and fault display code 27 8.3 The instrument weight is set to zero and the total accumulated quantity is cleared 29 8.4 Start and Exit of Process 30 8.5 Restore factory settings 30 IX. Appendix 32 Appendix 1 Top Loose Communication Protocol 32 Appendix 2 Command of Continuous Sending Mode 40	7.5 Timed shutdown function	. 24
8.1 Instrument test function	7.6 Input and output position adjustment	. 25
8.2 Instrument power-on self-test and fault display code	VIII. Instrument testing and other operations	. 27
8.3 The instrument weight is set to zero and the total accumulated quantity is cleared 29 8.4 Start and Exit of Process	8.1 Instrument test function	. 27
8.4 Start and Exit of Process	8.2 Instrument power-on self-test and fault display code	. 27
8.4 Start and Exit of Process	8.3 The instrument weight is set to zero and the total accumulated quantity is cleared	. 29
IX. Appendix		
Appendix 1 Top Loose Communication Protocol	8.5 Restore factory settings	. 30
Appendix 1 Top Loose Communication Protocol	•	
Appendix 2 Command of Continuous Sending Mode		
Appendix 3 Modbus RTU communication function code table	••	
11	Appendix 3 Modbus RTU communication function code table	. 42

I. Introduction

DS822-A8MTF (AXOO) is a split programmable weighing controller connected with digital sensors. The host is installed with standard guide rail, which can be directly connected to the touch screen as man-machine interface, or connected to the display panel produced by our company. This controller has the characteristics of multifunction, high precision, high reliability and user programmability.

Figure 1.1 Physical drawing of main engine and man-machine interface accessories

Hardware resources and functions

(1) 12 common switch input points, which can receive the following signals:

Passive switch, button, relay output

Or NPN PNP transistor switch input

DC voltage signal, voltage range 6-24 V

- (2) 18 relay outputs, contact capacity: AC220V, 5A or dc30v, 5A
- (3) The output of the No.20 OC is corresponding to the outa gate of 19
- (4) One channel 485 communication sensor interface can connect 16 digital sensors

(5) Two way communication interface

One is RS485 interface, fixed to the standard Modbus RTU protocol, with a baud rate of 38400. It can be connected to the display panel produced by our company or touch screen of other brands

The other channel can be connected with RS485 / RS232 signal. It can be used to communicate with computer, PLC, etc

- (6) 1 channel large screen output interface (multiplexed with OC gate output port outb, only one function can be selected at the same time)
 - It can connect 1 to 2 large screen displays produced by our company
- (7) Flexible and reliable programmable function, adapt to a variety of applications, users can carry out secondary programming, can be easily completed

At the same time, it can protect users' intellectual property rights

Main performance indicators

(1) Power supply voltage: DC24V (16~32V)

(8) Service temperature: $-10^{\circ}\text{C} \sim 40^{\circ}\text{C}$

(3) Storage and transportation temperature: $-65^{\circ}\text{C} \sim +150^{\circ}\text{C}$

(4) Relative humidity: < 90%

(5) Number of sensors connected: Up to 16

(6) Sensor power supply: DC12V (current > 400mA)

(10) Overall dimension of main engine: $176 \times 85 \times 71$

(11) Dimension of display panel: $160 \times 85 \times 30$

2.1 Installation Dimension Drawing of Host

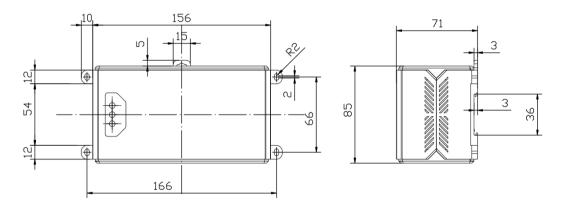


Figure 2.1 installation dimension of main engine

2.2 Installation dimension drawing of display panel

Figure 2.2 installation dimension of display panel

2.3 installation dimension drawing of touch screen (7 inches)

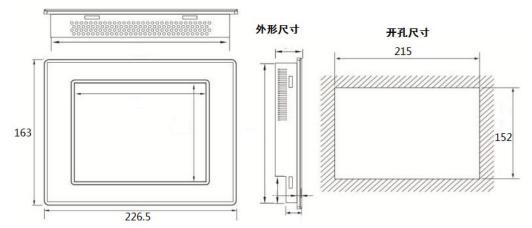


Figure 2.3 installation dimension of touch screen

III. Interface Layout of Host and Accessories

3.1 Interface layout of instrument host

The terminals of the instrument host are distributed on the AB side of the upper and lower sides. The a side is the display and switch input interface, while the B side is distributed with other interfaces, such as switch output port, power input port, high-speed pulse input port, weighing sensor interface, full function communication port, etc.

3.1.1 a side of instrument host panel

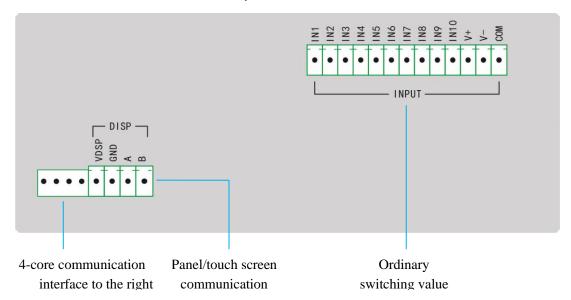
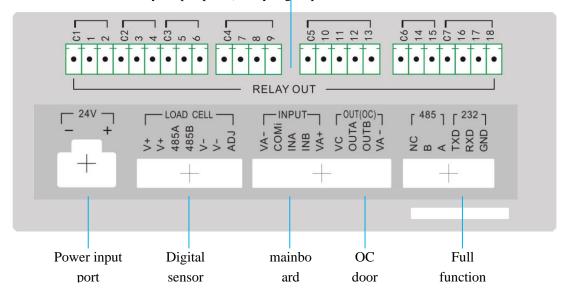



Fig. 3.1 function diagram of a side of host panel

3.1.2 B side of instrument host panel

Relay output port (totally 5 groups of 18 channels, C1-C5

Figure 3.2 function diagram of B side of host panel

3.2 Display panel function layout

The host can be connected to the display panel produced by our company as the man-machine interface. The display panel is double row LED display with 6 independent setting keys. There are two stability indicators, two rows of input and output indicators.

Front display panel (2.1)

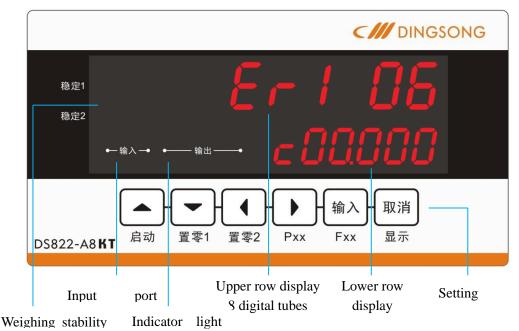


Figure 3.3 function diagram of display panel (front)

3.2.2 display panel (back)

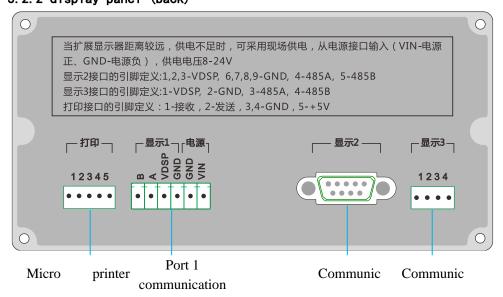


Figure 3.4 function diagram of display panel (back)

Note: the functions of the three display communication ports are completely equivalent. A communication line is provided with the factory, and the two ends can be connected to the display 3 interface of the display panel and the left side of the disp interface of the host computer, without the user's wiring. The user can also choose the appropriate interface.

IV. Connection method of instrument port

4.1 Connection method of common switch input port

		The instrument has 10 channels of common switch input (in1-in10).
		The common terminal com is not connected to any electrical node
	Optocoup	in the instrument, and the power supply positive (+ V) and power
in	1er	negative (- V) are led out internally. According to different
pu	isolatio	needs, the common terminal can be connected to + V or - V or
t	n switch	not. Each input port can be connected with button, trigger switch,
	value	relay contact point, proximity switch, etc,DC voltage signal
		(6-24 V) can also be input. See the figure below for specific
		common connection method

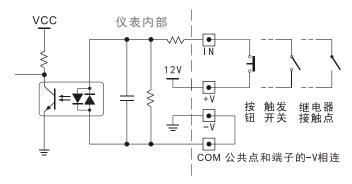


Figure 4.1 schematic diagram of switch input connection

Note: the common point com in the figure can also be connected with + V. at this time, one end of the button should be connected with - V. different connection methods can be selected according to the needs.

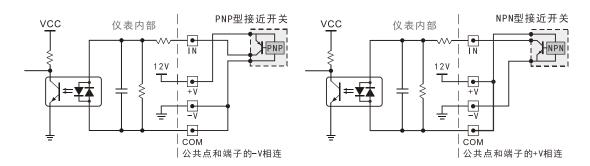


Figure 4.2 PNP proximity switch connection diagram 4.3 NPN proximity switch connection diagram

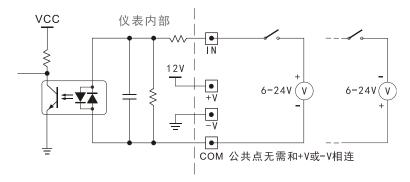


Figure 4.4 schematic diagram of DC voltage signal input connection

4. 2 Connection method of switch output port

		A total of 18 output (1-18), contact capacity: AC220V / dc30v,
ou		5A. It can be directly connected with small power resistive load
tp	relay	and low power AC / DC inductive load (such as AC contactor and
ut		DC contactor). The wiring method is shown in the figure below. When
		the instrument is connected in series, please prevent damage

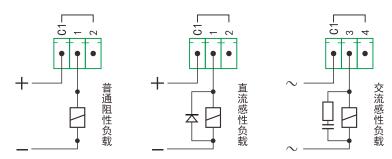


Figure 4.5 Schematic diagram of relay output connection

4.3 The transistor OC gate is connected to the large screen display.

	Communic	This instrument can be connected to one or two large-screen
011		displays. Note that this interface is multiplexed with the OC gate
ou	ation	output port, and only one function can be selected. If you want
tp	current	to use this function, you must first set the parameter F37. See
ut	loop	Section 7.3 for details.

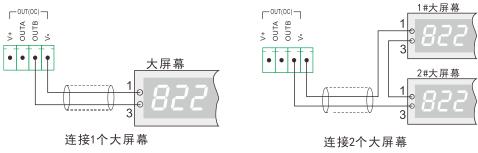


Figure 4.7 Schematic diagram of connection of large screen display

Note: Two large screens can also be connected in parallel, for example, the two
input lines of two large screens can be connected in parallel in the left figure.

4.4 Connection method of load cell

The sensor interface of this instrument is RS485 communication port. The power supply is 12V, the driving current is > 400mA, and 16 digital sensors can be connected. If ADJ and V- are shorted, the power supply voltage of the sensors can be increased to adapt to the longer connection distance.

4 4 1	Lahel	and	function	٥f	load ce	ll ir	terface

serial number	grade	Corresponding function
1	V+	Sensor power supply positive
2	V+	Sensor power supply positive
3	485A	485A
4	485B	485B
5	V-	Sensor supply negative
6	V-	Sensor supply negative
7	ADJ	If ADJ and V- short circuit can increase the supply voltage
		of the sensor.

Table 4.1 Label and function of load cell interface

4.5 Connection method of communication interface

such as Section 3.1As shown in the interface layout of the instrument host, there is a communication port on both sides A and B of the instrument host.

Figure 4.10 Schematic diagram of two communication interfaces of the instrument

The 1# communication port on the surface A is RS485 interface, which is fixed to the standard Modbus RTU protocol with baud rate of 38400, and can be directly connected (without any setting) to the display panel produced by our company or the touch screen sold by our company.

B 2# communication port is a full-function communication port compatible with RS485 and RS232 at the same time. The communication mode, address and baud rate can be set. Top loose protocol, standard Modbus RTU protocol and a variety of continuous transmission modes can be selected. It can communicate with computers,

PLC and other devices.

Note: When the 2# communication port is set to Modbus RTU protocol, it has the same function as the 1# communication port.

Note: The first interface NC on the left of 2 # communication port is not connected to any electrical node, and can only be used in special occasions.

4.5.1 Connection Method of Host and Display Panel

There are also two connections to the host display panel. The first one supplies power to the host, as shown in connection 1 below. If the distance between the display panel and the host computer is far, connection 2 can be adopted at this time, and the external power supply is used, and the power supply voltage is 8-12V DC.

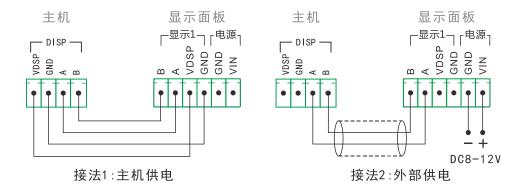


Fig. 4.11 Connection Method between Host and Display Panel

4.5.2 Connection method between host and touch screen

The instrument can directly supply power to the touch screen, or it can be externally supplied if the distance between the touch screen and the host is far. Please refer to the relevant information of the touch screen for the power supply voltage range and connection method.

V. Parameter setting

5.1 Function and operation of setting buttons on the display panel

such as Figure 3.3As you can see, there are 6 independent setting buttons on the display panel. Each button has two names and performs different functions in different situations. Each key has two operations: short press and long press. When a key is pressed, the buzzer will sound short, and then releasing the key is short press. If you press and hold a key for more than 2 seconds, It is a long press when the buzzer is released after a long sound. If it is still not released

at this time, it will enter the button continuous operation mode. The functions of the six setting buttons are as follows:

serial number	Key diagram	Key name	function	remarks	
	启动	[†]	Set the current menu item to flip up. Set the target number plus 1		
1		[start]	Start the selected process Press long to indicate [Stop] to exit the process.	See relevant process information for details.	
2	置零1	[+]	Set the current menu item to flip down. Set the target number minus 1.		
		[Set to zero 1]	1# scale is set to zero or calibrated to zero.	See. 8.3 Section/6.1 festival	
	4	[←]	Set the currently selected number to move left.		
3	置零2	置零2	[Set to zero 2]	2. Zero setting or calibration of scale Long press indicates [Clear] to clear the accumulated amount.	See. 6.1 festival See. 8.3 festival
4	•	[-]	Set the currently selected number to move to the right.		
4	Pxx	【Pxx】	Long press to enter the p parameter setting.	See. Section 5.5	
5	输入	[input]	Confirm the current parameter setting		
J	Fxx	【Fxx】	Long press to enter f parameter setting.	See. Section 5.4	
	取消	[Cancel]	Exit the current parameter setting.		
6	显示	[display]	Press and hold to display the secondary display content.	See section 7.5 for details.	

Table 5.1 Function Description of Setting Keys of Display Panel

Note: Description of displaying and setting key operation.

- (1) The parameter setting in this chapter refers to the operation on the display panel produced by our company, and the touch screen operation is described separately.
- (2) The "weighing display state" in this chapter refers to the default state that

the instrument has not entered any menu after being powered on.

- (3) The key operations in this chapter are uniformly expressed by big square brackets [] and key names, such as [Enter] and [Pxx].
 - Unless otherwise specified, key operation refers to short press. If it is long press, it will be marked, such as long press [Fxx].
- (3) In this chapter, the corresponding digital tube displays are uniformly displayed with small square brackets [] and display contents, such as [d 010]
- (4) Display panel digital tube display comparison table

Α	В	C	D	Ε	F	G	Н	1	J	K	L	M	N	0	Р	R	S	T	U	Υ
R	Ь	C	ď	Ε	F	9	H	1		/ -	L	ار	n	o	P	-	5	۲	IJ	4

Table 5.2 Display Comparison Table of Digital Tube in Display Panel

5.2 Introduction of instrument parameters

This instrument has two sets of parameters: F parameter and P parameter. The meaning of F parameter is fixed, and it is the internal working parameter and operation item of the instrument. See for details. Section 5.5.2. The P parameter corresponds to the variables of the instrument workflow, and its visibility, password control and corresponding meaning are all determined by the workflow. See the corresponding workflow data for details.

Press and hold the [Fxx] key for viewing and setting F parameters, and press and hold the [Pxx] key for viewing and setting P parameters. See the introduction of the following sections for specific operation methods.

5.3 Password control and permitted operation items

This instrument is controlled by password. After the instrument is powered on, the initial state is no login. Some operations of this instrument can only be carried out after logging in with corresponding passwords. There are three levels of passwords, namely, user (User-1), administrator (User-2) and manufacturer (User-3). You can operate the corresponding functions by logging in with different passwords, and the privilege levels of these three passwords increase in turn. The operation items that allow password login at this level also increase in turn. See the following table for details:

seri		Login password level							
al numb er	Operation item	No login	user	admin istra tor	factor				
1	Zero and tare operations	√	√	√	~				
2	And view and modify	√	√	√	√				
	non-regulatory p parameters.								
3	And view and modify control p	×	√	√	√				
	parameters.								
4	View and modify f parameters	×	√	√	~				
5	Check the second display content.	×	√	√	√				

6	Weighing	×	√	√	√
7	Process start and stop	×	√	√	√
8	Initialize instrument	×	√	√	√
9	Set a timed shutdown.	×	×	√	√
10	Setting input and output ports	×	×	√	√
11	Consistency calibration	×	×	×	√

Table 5.3 Comparison of Password Levels and Operating Items

Note: $\sqrt{\ }$ indicates the permitted operation items under password login at this level, and \times indicates the impermissible operation items.

Note: Some items are realized by F parameter, and the corresponding parameters can only be displayed after logging in the password of this level.

Note: If the highest bit of F parameter F22 is set to 0 (the factory default value is 1), the user's (User-1) level permission will be automatically obtained without login, that is, the items marked orange \times in the above table can be operated without login.

5.4 Operation steps of password login

The specific operation steps of password login are as follows:

button	Lower row display	Upper row display	meaning
【Fxx】	[F00]	[PP]	In the weighing display state, press and hold the [Fxx] key for a long time, and the lower row will flash. If you have logged in, the lower row displays [F01]. If you need to switch the login level, you can press the 【↓】 key and select the parameter F00. If you enter the current password again, you will enter the password change function. See Section 7.5 for details.
[input]	[<i>F00</i>]	[PP]	The top row flashes the rightmost digit.
directio n key	[<i>F00</i>]	[PP1]	Enter the corresponding password, factory default value: user password [-1], administrator password [59565], manufacturer password, dynamic uncertainty.
[input]	[F00]	[USEr-1]	According to the unused password, the corresponding login prompt is displayed, which indicates that the login is successful. If the input password is wrong, [,err,,] will be displayed, and after 1 second, it will automatically exit and enter the weighing display state.

Table 5.4 Specific Operation Steps of Password Login

Note: After the power is turned on again, you will automatically log out of the login state. If you need to operate the corresponding items again, you need to log in again. If you need to log out of the logged-in state, you can also take the initiative to power off and restart the instrument.

Note: The password of the manufacturer (User-3) is dynamic. If necessary, please contact us for information.

5.5 F parameter setting and lookup table

5.5.1 Step of parameter setting

- (1) in the weighing display state, according to the Section 5.4 Introduce the method of login (skip this step if you have already logged in).
- (2) Press and hold the [Fxx] key for about 2 seconds, and the lower row of the instrument will display [F01] and the upper row will display [D, ***]. You can select different parameters by pressing the [↑] [↓] key to operate, and the lower row will display the current F parameter number in a flash.
- (3) After the corresponding parameters are selected, press the [Enter] key again to enter the corresponding parameter modification operation. At this time, the lower row does not blink, but the parameter content in the upper row blinks, which can be modified by the four keys [←] [→].
- (4) After the modification, press [Enter] to confirm the completion of the setting, and press [Cancel] to abandon the current item setting and exit to the previous menu.

Note: For some parameters, users can completely enter their own set values, while for others, they can only select the built-in fixed parameters through $[\uparrow]$ [\downarrow], and users can judge whether the parameter values displayed in the upper row are flashing or not.

5. 5. 2 F	parameter	tab	le
-----------	-----------	-----	----

	wer row isplay	Upper row display	meaning			
[F00]	[PP]	Prompt for login password, see section 5.4 for details.			
[FD []	[d 0 ! 0]	Grading value (01,02,05,10,20,50,100 optional)			
[F02]	[P 0]	If the number of decimal places (0-4 optional) of the weight exceeds, the error code [Error, 08] will be displayed.			
[F03]	[30090]	The full-scale value of the scale (factory default value: [,,030090])			

[F04]	[r-0	X. Y]	O-cAnnot bestt to Zero 1-1%2-2%3-5%4-10% 5-20% 6-50% ≥ 7-100% X-AUto-ZeroIng-Rnge Rt Poyer-on (Percent Rge of the Full-Scale uALUE of the Scale) y-rey Zero Setting-Rnge (Percent Rge of the Full Scale uALUE of the Scale) For example, setting it to "2.5" means that the automatic zero setting range of power-on is 2%, and the zero setting range of key is 20%. The factory default setting is "1.1"
[F05]	[r-R	0.5]	Zero tracking range (set range 0.0~9.9 division values)
[F06]	[ñodE	02]	See section 7.1 for communication mode.
[F07]	[Rdr	<i>0 1</i>]	Mailing address (1-26 optional), which indicates that the content to be sent is selected in continuous sending mode.

Quick Table of Group Parameters (Continued 1)

		Upper row display	meaning			
[F08]	[038400]	2# baud rate of communication port (600 2400, 4800, 9600, 19200, 38400, 5 optional)			
[F09]	[FLE 0.0]	1# scale filter coefficient (0-9 options the number, the deeper the filter) Press [Enter] to display [FLT-2, 0], 2 # coefficient. Press [Enter], and [uint, 00.0] will be disparameter is reserved.	‡ scale filter		
[F 10]	[rt 0.2]	Judgment time (it is recommended to set it to 1.0 seconds)			
[FII]	[rF 01]	Judging range (it is recommended to se The larger the value, the more unstable such as livestock scale.	·		
[F 12]	[cRL-1]	Weighing (see chapter 6 calibration details)	n method for		
[F 13]	[£S£-cELL]	Test the sensor output signal and press [Enter]: The lower row shows the sensor number [c01] The upper row displays the sensor output code or error message [* * * *]. Use [←] [→] key to cut the sensor display.			
[F IY]	[<i>EESE-dSP</i>]	Display test	See section		

[[o-000000]	Test outlet	8.1 for			
[F 18	[<i>E SE - P S U L</i>]	Test pulse input port	details.			
[F17	7] [d **.**.**]	Current date				
[F 18	B] [£ **.**.**]	present time				
	3] [LInE **]	Set the workflow number (factory default 00 means none) 1-14 the fixed process listed in the corresponding specification. No. 15 is an empty process. Note: No. 1-6 is the instrument fixing process, which cannot be modified. No. 7-15 can receive the user-written process through serial port. Please refer to relevant process information for details.				
[F20	7] [d5P1 ***]	In the weighing state, the contents displayed on the upper row of the display panel are displayed. Press [Enter] to display [KP1, ***], which indicates the content displayed in the lower row. See section 7.5 for details.				
[F2	[d5 <i>P2</i> ***]	In the weighing state, the contents displayed in the lower row of the display panel are displayed.				
[F28	?] [<i>LF</i> ****]	[LF RbcdE] A: select the method of obtaining user (User-1) leve permission. (1) short circuit (NC) and (RXD) of the main seria				
[F23	B] [8-oUt 1]	Non-instrument function				
[F24	() [8-oUt 2]	Non-instrument function				
[F29	[R-In]	Non-instrument function				
[F28	[£5£- c8ā]	Test RAM, see section 8.1 for details.				

Quick Table of Group Parameters (Continued 2)

	er row splay	Upper row display		meaning	
	F27]	[,	n o]	Non-instrument function	
[F28]	[5510]	See section 8.1 for the test port.	
[F2 3]	[88**]	Display version number, and display other related contents in the input order.	

[F30]	[r-c8L]	See the calibration result (calibration coefficient of each sensor), see section 6.2 for details.		
[F31]] [Inlt 0]	Used to initialize the instrument, see Section 8.5 for details.		
[F32]] [d-oF]	Special functions (such as input and output position adjustment, etc.) For details.		
[F36]	[Pro9]	Enter process No. 6 manually. If you need this function, please contact us for details.		
[F31]	[rdP1 000]	1# big screen output content Press [Enter] to display [rdP2 000], and set the output content of 2# large screen. The factory default is 0, which means there is no output. See Section 7.2 for details.		

Table 5.5 F Parameter Quick Table

5.5 P parameter setting

Follow the following steps to enter the P parameter setting:

- (1) Press and hold the [Pxx] key for about 2 seconds, and the lower row of the instrument will display [P**] and the upper row will display [,* * *] (the specific content will be determined according to the process). You can select different parameters by pressing
- (2) After the corresponding P parameter is selected, press the [Enter] key again to enter the corresponding parameter modification operation. At this time, the lower row does not flash, but the parameter content in the upper row flashes, which can be modified by the four keys $[\leftarrow]$ $[\rightarrow]$.
- (3) After the modification, press the [Enter] key to confirm the completion of the setting, or press [Cancel] to abandon the setting of the current item and exit the previous menu.

Note: Some parameters are set as control parameters by the process, so you need to followSection 5.4This paper introduces the method of logging in first, and if you have logged in, you will automatically display all the P parameters that can be set.

Note: Please refer to the corresponding process data for the specific meaning of P parameter.

VI. Weighing and calibration of instruments

When this instrument is used for the first time, or after a period of use, the weighing error is large, so it is necessary to carry out weighing calibration. This instrument can be calibrated in kind, and in some cases where physical calibration is not possible, it can be calibrated by calculation method. If it is the first calibration, the user needs to set the F parameter related to weighing before entering the formal calibration step. The parameters involved are:

serial number	F paramete r	default	meaning	remarks	
1	FO I	10	Grading value		
2	F02	0	Decimal digits of weight		
3	F03	030090	The full-scale value of the		
			scale		
4	FOY	1,1	Zero setting range		
5	FOS	0.5	Zero tracking range		
G	F09	1.0	1# Scale Filter Coefficient		
6	rus	1.0	2# Scale Filter Coefficient		
7	F 10	0.2	Judgment time		
8	FII	1.0	Judging range		

Table 6.1 F parameters related to weighing

6. 1 Calibration, correction of angular difference and axial difference, and sensor number

- (1) Calibration refers to zero point calibration and loading point calibration. Calibration can be divided into two situations: 1. Each sensor is an independent scale, and it is necessary to calibrate the zero point and loading point of each sensor independently; 2. When a scale uses multiple sensors, it is necessary to calibrate the zero point and loading point of the total weight and correct the diagonal difference.
- (2) When multiple digital sensors are used for one scale, it is necessary to correct the angular difference of goods axle.
- (3) Connect multiple sensors to the instrument correctly, and set the number of sensors on the instrument. The instrument will automatically address the sensors. Automatic addressing is random, so users can re-address sensors according to certain rules. Although this is not necessary, However, it is strongly recommended to re-address the sensors according to certain rules before commissioning, which has the following advantages: 1. By the way, check whether the sensors are suspended, 2. It is convenient for later maintenance, and 3. Axle correction must be addressed according to rules, that is, No. 1 and No. 2 rows, No. 3 and No. 4 rows, and so on.

The specific steps are as follows:

button	Lower row display	Upper row display	meaning		
【Fxx】	[F01]	[d ***]	In the weighing display state, press and hold the [Fxx] key for a long time, and the lower row will flash. If [F00] is displayed in the lower row. Then enter the password above the administrator level to log in first, and then do this step again.		
Press and hold [↑]	[F 12]	[<i>0-cALoo</i>]	Press and hold [†] continuously to quickly locate F12.		
[input]	[F12]	[<i>0-c8Loo</i>]	The upper row flashes, and [↑] [↓] can select the following operation items 1, [0-caloo], which means zero point calibration, 2. [1-calLD], indicating the calibration of loading point. 3. [2-adJcn], which indicates the corrected angular or axial difference. 4. [3-addr] means to adjust the sensor number.		
Select t	he calibrati	on zero point:			
	[F 12]	[O-cALoo]	Select loading point calibration		
[input]	[F12]	[000-00]	Zero calibration: use the two digits modified by the direction key to select the sensor with zero calibration. If it is 00, it means zero calibration for all sensors.		
[input]		Return to normal display	Operation completed		
Select t	he loading p	oint calibratio	n:		
[1]	[F 12]	[I-cALLd]	If load point calibration is selected		
[input]	[input] [F12] [cAL-00]		Zero calibration, use the two digits modified by the direction key to select the sensor to be calibrated, and if it is 00, it means the total weight of all sensors is calibrated.		
[input]	[cRL-00]	[000000]	Enter the target weight with the arrow keys.		
[input]		Return to normal display	Operation completed		

Choose t	Choose to correct the angular difference or axial difference:					
[†]	[F 12]	[2-RdJcn]	Select the correction angle difference or axis difference.			
[input]	[F12]	[RdJ-01]	Load at a certain sensor point, and the last two digits show the number of the sensor with the largest load. If you enter 99, it means axle error correction.			
[input]	[88J-01]	[000000]	Enter the target weight with the arrow keys.			
[input]	[input] Return to normal display		Operation completed			
Select t	he sensor nu	mber to:				
[†]	[F 12]	[3-Addr]	Select the sensor number.			
[input]	[8dr-3]	[00-00]	Two digits on the left show the number of the currently loaded sensor, and on the right, enter the target number to be modified.			
[input]		Return to normal display	Operation completed			

Table 6.3 Calibration and debugging steps

6.2 Calculate the calibration method and check the calibration coefficient.

The calibration of calculation method can be completed by parameter F30, and the calibration coefficient in this parameter is obtained by theoretical calculation method. The calculation formula is:

Calibration coefficient = sensor range/sensor full output code

The specific operation steps are as follows:

button	Lower row display	Upper row display	meaning		
[Fxx]	[<i>FOI</i>]	[d ***]	In the weighing display state, press and hold the [Fxx] key for a long time, and the lower row will flash. If [F00] is displayed in the lower row. Then enter the password above the administrator level to log in first, and then do this step again.		
Press and hold [†]	[F30] Flash	[r-cRL]	Press and hold [†] continuously to quickly locate F30.		
[input]	[r01] Flash	[0.1666666]	Calibration coefficient of 1# sensor		
[→] key	[r02] Flash	[0.1666666]	Calibration coefficient of 2# sensor		

The $[\leftarrow]$ $[\rightarrow]$ key can switch to display the calibration coefficient of each sensor when flashing in the lower row, and the arrow keys can be used to modify the coefficient when flashing in the upper row. Press the [Enter] key to switch the flashing in the upper and lower rows.

Table 6.4 Steps of Calculation Method Calibration

VII. Setting of other working parameters

7.1 Parameter setting and protocol of full-function communication port

The 2# communication port is a full-function communication port, and the communication mode, address and baud rate can be set. It supports top-loose protocol, standard Modbus RTU protocol, multiple continuous transmission modes, etc.

The F parameters involved are F06 (communication mode), F07 (communication address) and F08 (communication baud rate). Please refer to the specific setting method. Section 5.5. Communication mode F06 determines the protocol currently used by this communication port. See the following table for details.

Protocol	Communication	Communi	cation data f			
type	mode F06	data bit	Check digit/mode	Stop bit	remarks	
	0	7-bit ASC code	1-bit/even check	1 bit	This protocol is an instruction	
	1	7-bit ASC code	1-bit/odd check	1 bit	response mode. When F6 = 3, the	
Top loose	2	8-bit ASC code	No parity	1 bit	check word (CHK) is not checked for	
agreement	3	7-bit ASC cod e	1-bit/even check	1 bit	correctness or presence when receiving data. See Appendix 1 for details.	
6 4:	4	7-bit ASC code	1-bit/even check	1 bit	Sent every 35mS	
Continuous transmission	5	7-bit ASC code	1-bit/odd check	1 bit	See Appendix 2 for details of the agreement.	
mode	6	8-bit ASC code	No parity	1 bit		
Serial port	8	8-bit ASC code	No parity	1 bit	The input busy signal is high (common)	
printout	9	8-bit ASC code	No parity	1 bit	The input busy signal is low	
	10	8 bits	1-bit/even check	1 bit		
Modbus RTU	11	8 bits	1-bit/odd check	1 bit	See Appendix 3 for the register	
	12	8 bits	No parity	2 bits	function table.	
	13	8 bits	No parity	1 bit		

Table 7.1 Communication Mode Setting Table

7.2 OC door outlet OUTB is used as the outlet of large screen.

If either parameter of 1# large screen output rdP1 and 2# large screen output rdP2 under F37 parameter of F parameter is not 0, the OC gate output outlet OUTB will be switched to large screen output, and the original output function will be disabled. P1 and rdP1 can be set as follows:

serial number	parameter	Show content	serial number	parameter	Show content
1	000	The main display	6	092	Variable P92,2#
		shows 0/ the			tare weight
		auxiliary display			
		does not show.			
2	001	Variable P01	7	099	Variable P99
3	•••••		8	100	1. Gross weight
4	090	Variable p90,2?	9	101	1. Net weight
		Gross weight			
5	091	Variable p91,2 ာ	10	102	1. Tare weight
		net weight			

Table 7.2 parameters and contents of output variables of large screen

The output port is a current loop, which can connect 1-2 large screens. When connecting two large screens, either the series method or the parallel connection method can be used. For details, seeSection 4.4. When using the company's large screen, if two large screens are connected, each large screen can automatically identify its own corresponding display variable (see its manual for the setting of large screen serial number), so as to realize the function of 1×1 large screen displaying 1 9 variable and 2 1 large screen displaying 2 1 variables, such as one displaying gross weight and one displaying net weight.

7.3 Modify the login password

The password of user and administrator can be modified, but the password of manufacturer is dynamic and cannot be modified. As long as you use the correct password for the second login, you can enter the password modification interface. The specific steps are as follows:

button	Lower row display	Upper row display	meaning
【Fxx】	[FO 1]	[d ***]	In the weighing display state, press and hold the [FXX] key, and the lower row will flash. If the lower row displays [F00]. Then enter the password of the level you want to change, log in first, and then perform this step again

[\ \]		F00]	[PP]	Choose to log in again
[input]	[F00]	[<i>PP</i>]	After pressing the input key, the right most horizontal bar in the upper row flashes
directio n key	[<i>F00</i>]	[PP1]	Enter the corresponding password (take the factory default user password as an example)
[input]	[<i>F00</i>]	[01]	Enter the new password interface, the top row of the right bar flashing display
directio n key	[F00]	[n/*****]	Enter the new password for the first time through the direction key
[input]	[F00]	[-!]	Enter the new password interface, the top row of the right bar flashing display
directio n key	[F00]	[r/*****]	Through the direction key, enter the new password again to verify whether it is consistent
[input]	[F00]	[of	OK1 is displayed, indicating that the user password has been changed successfully After 1 second display, it will automatically exit to the weighing display state If it does not match the password entered for the first time, the previous step will still be displayed

Table 7.3 login password modification steps

Note 1: the second login must be the same level password, otherwise it will switch between different login levels, unable to enter the password modification interface.

Note: If you forget your login password, please contact us for relevant operation information.

7.4 Settings of panel display content

The panel display is double-row digital tube display, the specific content of which can be set freely, and the F parameters involved are F20 and F21. DSP1 in parameter F20 corresponds to the upper row main display, KP1 corresponds to the upper row auxiliary display, DSP2 in parameter F21 corresponds to the lower row main display, and KP2 corresponds to the upper row auxiliary display. All four parameters can be set to the following:

serial number	parameter	Show content	serial number	parameter	Show content
1	000	The main display	5	100	Process executor
		shows 0/ the			status
		auxiliary display			
		does not show.			

2	001	Strain PO1	6	101	Cumulative times
3	•••••		7	102	Cumulative weight
4	099	Strain P99	8	103	Current weight

Table 7.4 shows variable parameters and contents.

If nonexistent content is set, [---] will be displayed.

Note: Sub-display refers to the contents displayed on the display panel when the [Display] key is pressed and held in the weighing display state.

Note: Whether it is the primary display or the secondary display, the configuration in the workflow takes a higher priority. If the process is set, the settings of parameters F20 and F21 are invalid after the process is started (they are still valid when the process is stopped).

Note: If the password of User-1 or above is logged in, there is a fixed second display in the lower row, which indicates the working state of the current process executor, which is convenient for process debugging. The secondary display and the second secondary display are switched in turn every time the [Display] key is pressed.

7.5 Timed shutdown function

The timed shutdown function belongs to the project above the level of administrator (User-2), and the corresponding F32 parameter appears only after logging in with the corresponding password. The following steps assume that you have logged in correctly:

button		er row splay	Upper row display		meaning
[Fxx]	Г	F0 I]	[d	***]	In the weighing display state, press and hold the [Fxx] key for a long time, and the lower row will flash. If [F00] is displayed in the lower row. Then enter the password above the administrator level to log in first, and then do this step again.
Press and hold [†]	[F32]	[d	-oF]	Press and hold [†] continuously to quickly locate F32.
[input]	[F32]	[487	1366]	Enter the timing days setting, and the rightmost digit in the upper row flashes.
directio n key	[F32]	[ary	100]	Set the number of scheduled days (take 100 days as an example here) 1-1365 is optional, and 1366 means infinite length (i.e. there is no scheduled shutdown function).
[input]	[F32]	[91	0]	express

[input]		F32]	[35	0]	
[input]	[F32]	[43	0]	
[input]	[F32]	[44	0]	Said whether to enter the input and output adjustment settings, select 0 here.
[input]	[F32]	[d-	oF]	Set up.

Table 7.5 Operation Steps of Timed Shutdown Function

Note: The following functions are not available once the scheduled shutdown arrives:

Note: Turning off the timed shutdown function means setting the day in the above table to 1366.

7.6 Input and output position adjustment

Under normal circumstances, the number of input and output ports in the instrument corresponds to the logo on the host panel one by one. In some special cases, for example, the input and output ports corresponding to the working process are damaged, but the host has idle input and output ports. At this time, you can use the input and output position adjustment function to modify the mapping relationship between the internal number and the external display logo. Achieve the purpose of continuing to use the instrument without modifying the process.

This function belongs to the project of the administrator (User-2) level or above, and it is in the same F parameter F32 as the scheduled shutdown function set in Section 7.6. When setting the Y4 parameter, it can be changed to 1, and the function can be entered. The following steps assume that the user has successfully logged in and entered the F32 modified project (if not, please refer to the steps in Section 7.4):

Input	positi	ion ad	justment	step	tab	lе
-------	--------	--------	----------	------	-----	----

button	Lower row Upper ro			meaning	
[input]	[F32]	[44	0]	Said whether to enter the input and output adjustment settings.
[†]	[F32]	[44	<i>[</i>]	Select 1 here to enter this function.
[input]	[F32]	[ln l	1]	Re-map input port 1, for example, if it is set to 2, it will be mapped to IN2.
[input]	[F32]	[102	2]	Remapping input port 2
[input]		F32]	[In3	3]	Remapping input port 3
[input]		F32]	[/~4	4]	Remapping input port 4

[input]	[F32]	[105	5]	Remapping input port 5
[input]	[F32]	[/n8	6]	Remap input port 6
[input]	[F32]	[/_7	7]	Remapping input port 7
[input]	[F32]	[108	8]	Remap input port 8
[input]	[F32]	[oUE I	1]	Re-map output port 1, for example, if it is set to 2, it is mapped to OUT2.
[input]	[F32]	[oUt2	2]	Remapping output port 2
[input]	[F32]	[oUt 3	3]	Remap output port 3
[input]	[F32]	[oUt4	4]	The remapping output port 4
[input]	[F32]	[<i>oU</i> £5	5]	Remap output port 5
[input]	[F32]	[oUt6	6]	The remapping output port 6
[input]	[F32]	[oUt 7	7]	The remapping output port 7
[input]	[F32]	[oUt8	8]	The remap output port 8
[input]	[F32]	[oUt9	9]	The remap output port 8
[input]	[F32]	[oUtR	R]	The remap output port 10
[input]	[F32]	[oUt b	b]	The remapping output port 11
[input]	[F32]	[oUtc	c]	The remap output port 12
[input]		F32]	[d-o	F]	Set up.

Table 7.6 Operating Steps of Input/Output Position Adjustment Function

VIII. Instrument testing and other operations

8.1 Instrument test function

This instrument has rich testing functions, which is convenient for on-site debugging and use. All the test functions of are implemented in the F parameter. Please refer to Section 5.5 for how to access this parameter. The specific items tested are as follows:

seri al numb er	test item	show	operating procedure
FIY	Nixie tube Led display	[<i>EESE-dSP</i>]	Press [Enter], and the meter will automatically test the LED and nixie tube display. Scroll the display visually, and judge the display failure.
F IS	relay delivery outlet	[<i>o-000000</i>]	Press [Enter], enter the output port to be tested, and you can test a single one. You can also test more than one. Enter [o-00002] if the output No. 2 is tested; For test No. 123, enter [o-000123], then press [Enter], the corresponding output port will act, and the indicator light on the front panel will light up at the same time, then press after the test. [Cancel] to exit the test.
F 16	High speed pulse input port	[<i>ESE-PSUL</i>]	Press [Enter] to display [A00000]. At this time, input a signal at the pulse input port, and the meter will display the measured pulse number. Press after the test. [Cancel] to exit the test.
F26	Internal RAM	[65685]	Press [Enter], and [good ram] will be displayed if there is no fault. Otherwise, [bad ram] is displayed.
F28	2# communic ation port	[55 <i>lo</i>]	The detection method is to short the two signal lines RXD and TXD of RS232 communication, and the display: [ssio 1-] indicates that RS232 communication is normal. Connect the capacitor of 0.1uF between two signal lines A and B of RS485 communication, and the display: [ssio -2] indicates that RS485 communication is normal.

Table 8.1 Table of Test Function Items

8.2 Instrument power-on self-test and fault display code

After the instrument is powered on, the relevant information of the instrument

will be displayed first. The upper row of the display panel displays the instrument model and software version number, and the lower row displays the version date. Then, the internal self-test of the instrument starts. If any error is found, the error code number will be displayed. Multiple errors will be displayed for a certain time in turn, and then the normal working cycle will be started. If the process number is set, The correspond workflow will be automatically started.

Inside this instrument, there is a button cell to save the working state before power failure, and these states will be recalled after power-up. For workflow, after power-on, the process controller will perform a power-on trigger function, and if the process has corresponding operations, it will be executed.

After the power supply is turned on, if all the following conditions can be met, the instrument will perform a weight zero setting, which is to set zero for startup:

- (1) The workflow is not in the control state of feeding or discharging.
- (2) The weight can collect stable data within 6 seconds after power-on.
- (3) The weight value is within the range of starting and zeroing (see F parameter table F04).

8.2.1 Boot failure code

During the self-test of the instrument after power-on, the following error codes may be displayed:

serial number	Code display	Fault meaning	processing method
1	[<i>EPr</i>	Internal RAM failure	Repair in factory
2	[EPr 2]	Power failure detection fault	Check whether the input voltage is normal.
3	[EPr 3]	Loss of internal RAM data	Check whether the button cell on the motherboard is dead.
4	[EPr 4]	Loss of internal ROM data	Repair in factory
5	[<i>EPr</i> 5]	Internal program data error	Repair in factory
6	[EPr 20]	Internal clock error	Check whether the button cell on the motherboard is dead.

Table 8.2 Boot Fault Display Codes

8.2.2 Fault codes in normal operation

During the use of the instrument, the following fault codes may also be displayed:

serial number	Code display	Fault meaning	processing method
1	[Err 03]	Weight overload	Check the load, sensor, or calibration coefficient on the scale.
2	[8-1 06]	1# sensor failure	Check 1# sensor, main line, terminal connection line and junction box.

 3	[8~2 08]	2. Sensor failure	Check 2 o sensor, main line, terminal connection line and junction box
4	[8220]	Undervoltage power supply	Check the supply voltage

Table 8.3 failure display code in use

8.3 The instrument weight is set to zero and the total accumulated quantity is cleared.

Manual instrument zero setting

After the instrument has been used for a period of time, due to various reasons, the zero point may shift to a certain extent, which requires manual zero setting operation. Without logging in any level password, the weight range of zero setting operation needs to meet the requirements of parameter f04. The specific operation steps are as follows:

button	Lower row display	Upper row display	meaning			
[Set to zero 1]	[***]	[***]	In the normal weighing state, wait for the weight to be stable (the stability light is always on) Press [zero 1]			
	[***]	[0]	(this is based on the assumption that the upper row shows 1 × gross weight / net weight)			

Table 8.4 operation steps of manual zero setting

Note 1: if it is unstable or the current weight is beyond the range of zero setting, zero setting is invalid.

Note 2: after the zero operation is successfully completed, the current tare value corresponding to the corresponding scale number will also return to zero.

Note 3: after logging in the password of user-1 or above, the range of zeroing is unlimited, and the zero setting operation is equivalent to The zero point calibration is carried out.

Press "0" in the above figure to set the scale.

8.3.2 cumulative clearance

In some workflow, the cumulative quantity may be displayed. If you need to clear the current cumulative quantity, you can do the following:

button	Lower row display	Upper row display	meaning
--------	----------------------	----------------------	---------

[clearin g]	[]	[[SUrE 0] In normal weighing state, press and hold [zero 2] for more than 2 seconds					
[†]	[]	[SUrE 1]	Enter 1 to select the clear accumulation operation				
[input]	[***]	[****	After clearing the accumulated quantity, it will return to the weighing state automatically				

Table 8.5 operation steps of removing accumulated amount

8.4 Start and Exit of Process

By default, the process number parameter F19 of the instrument is 00, which means there is no workflow. Only when the corresponding instrument number is set can the user enter the corresponding work flow. Users can choose the fixed working process built in the instrument, or burn it into the instrument through the serial port through the computer software. (see relevant information of the process for details)

Generally, if the process number is set, the workflow will be started automatically after the instrument is powered on and started, without manual intervention. However, in some debugging States, it may be necessary to start or stop the workflow manually. This function belongs to the user (user-1) or higher level function, which requires corresponding login first. After login:

Press the [start] key to start the workflow

Long press the [start] key for more than 2 seconds (equivalent to the [stop] key) to stop the workflow.

8.5 Restore factory settings.

To restore the items set at the factory as user (User-1) password level or above, the following steps assume that you have successfully logged in:

button	Lower row display	Upper row display	meaning			
【Fxx】	[FOI]	[d ***]	In the weighing display state, press and hold the [Fxx] key for a long time, and the lower row will flash. If [F00] is displayed in the lower row. Then enter the password above the user level to log in first, and then do this step again.			
Press and hold [†]	[F31]	[Inlt 0]	Press and hold [†] continuously to quickly locate F31.			
[†]	[F31]	[Inlt I]	1, indicating that the initialization operation is selected.			
[input]	[F31]	[Inlt of]	Indicates that initialization is complete.			
[Cancel]	[***]	[*****]	Exit the settings menu			

Table 8.6 Operation Steps to Restore Factory Settings

Note: Please use this function carefully. When factory settings need to be restored, please save important parameters and data, such as tare value and calibration coefficient.

IX. Appendix

Appendix 1 Top Loose Communication Protocol

The loose communication protocol is a master-slave protocol based on Ascii code bytes. Each lower computer (instrument) has a unique address, and the upper computer sends instructions to the lower computer at the specified address. After receiving the instructions, the lower computer returns the corresponding information if the verification is correct. After receiving the correct answer, the upper computer will process it. If it is not received for a certain period of time, it will be regarded as communication timeout.

1. Format of protocol data frame

Whether it is the upper computer or the lower computer, the data of each frame has the same structure as the start byte and the end byte, as shown in the following two sections.

Frame 1 2 3 4 5 6 XOFF symbol XON **ADDR** CMD **DATA** CHK leading meaning address order data verify end mark flag Number 1 1 1 1 1 n of bytes numerical 0x02 A-Z A-Z 0x03 value

1.1 upper computer sends data frame format

Table 9.1 Data Frame Format of Upper Computer Sender

Part 1 (XON), fixed as 0x2, indicates the beginning of the data frame.

Part 2 (ADDR) is the address of the instrument. The value range is A-Z of Ascii code, which corresponds to 1-26 of the corresponding address parameters. After receiving the command, the lower computer will distinguish whether it is local data or not according to this address.

Part 4 (DATA), the number of bytes is uncertain, and it is 0 bytes under most commands.

The fifth part is the check code, which occupies one byte. The specific algorithm is:

XOR all the previous byte data of this data frame check code, and then OR with 0x40, that

(CHK) = (XON) xor (ADDR) xor (CMD) xor (DATA1) xor (DATA2) xor ··· xor (DATAn) or (0x40) Part 6 (XOFF), data frame end mark.

1.2 data frame format of answering end

is

Frame	1	2	3	4	5	6
symbol	XON	ADDR	CMD	DATA	СНК	XOFF
meaning	leading flag	address	order	data	verify	end mark
Number	1	1	1	n	1	1

of bytes						
numerical	0x02	A-Z	2.7	*	*	0x03
value	0x02	A-Z	a-z			0x05

Table 9.2 Data frame format of lower computer (instrument) answering end

The structure and meaning of the data frame answered by the answering end are the same as those of the sending end. The first difference is the third part (CMD), and the lower computer returns the lowercase letters of the corresponding commands. The difference is that the (DATA) part of the lower computer will definitely not be empty.

2, top loose communication protocol command detailed explanation

2.1 Command A to take the current weighing and status, including net weight, tare weight and various statuses.

Command (example address is a):

Command segment	XON	ADD	CMD	СНК	XOFF
Hex	02	41	41	42	03
format					
Ascii	*	Α	Α	В	*
format					

Slave answer:

contont	XON	VON	VON	4DD	CNID	DATA							СНК	XOFF
content		ADD	CMD	±	nnnnn	р	tttttt	е	f	u	СПК	AUFF		
Hex	02	41	61								49	03		
format	02	41	01		0 1 1 1 1 1					49	03			
Ascii	*	A	a	See the table below.						Ι	*			
format														

DATA part of slave machine answer (Note: the specific data in the following table is an example)

DATA	土	nnnnn	р	tttttt	е	f	u
meaning	symb	Net weight	decima	Tare weight value	mista	condit	reser
	ol		1 point		ke	ion	ve
Hex	2B	30 30 35 36 33 32	30	30 30 30 30 30 30	00	00	20
format	26	30 30 33 30 33 32	30	30 30 30 30 30 30	00	00	20
Ascii	+	005632	0	000000			
format	T	003032	0	000000			

Note: F represents the current state, and its bit meaning: DO- zero D1- stable D2- peeling.

2.2 Command B to read the accumulated data of the instrument.

Command (example address is a):

Command segment	XON	ADD	CMD	СНК	XOFF
Hex	02	41	42	41	03
format					
Ascii		Α	В	Α	
format					

Slave answer:

contont	VON	4DD	CMD		DA	CHN	XOFF	
content	XON	ADD	CIVID	СС	nnnnnn	dddddddddd	CHK	VOLL
Hex	02	41	62			49	03	
format	02	11	02		Soo the to	ble below.	10	
Ascii		A	b	,	see the ta	I		
format								

DATA answered by slave means:

DATA	СС	nnnnn	dddddddddd		
meaning	mate	Total times	Total weight		
	rial				
	code				

2.3 Command C to read the current display content of the instrument.

Command (example address is a):

Command segment	XON	ADD	CMD	СНК	XOFF
Hex	02	41	43	40	03
format					
Ascii		Α	С	@	
format					

Slave answer:

content XC	VON	XON ADD	CMD	DATA		CLIK	VOEE
	XUN			ррр	abc	CHK	XOFF
Hex	02	41	62			49	03

format		
Ascii	A	b
format		

DATA answered by slave means:

PP p-dis	splay characters of digital	tube	
Abc-indica	tes the status		
The meanin	ng of each binary bit of a	The meani	ng of each binary bit of b
BIT number	working parameter	BIT number	working parameter
(bit)		(bit)	
0	=1 indicates that relay	0	=1 indicates that the No.1
	No. 1 works.		external input has a
-1		-	signal.
1	=1 indicates that relay	1	=1 indicates that external
2	No. 2 works. =1 indicates that relay	2	input No. 2 has a signal. =1 indicates that external
2	No. 3 works.	2	input No. 3 has a signal.
3	=1 indicates that relay	3	=1 indicates that the No. 4
Ü	No. 4 works.		external input has a
	1.00 1011101		signal.
4	=1 indicates that relay	4	=1 indicates that there is
	No. 5 works.		a signal at external input
			No. 5.
5	=1 indicates that relay	5	=1 indicates that the No.6
	No.6 works.		external input has a
	**		signal.
6	Hengwei 1	6	Hengwei 1
7	Check Digit	7	Check Digit
BIT number	ng of each binary bit of c working parameter		
(bit)	working parameter		
0	=1 indicates that the No.7		
	external input has a		
	signal.		
1	=1 indicates that the No. 8		
	external input has a		
	signal.		
2	=1 indicates that relay		
	No. 7 works.		
3	=1 indicates that relay		
1	No. 8 works.		
5	=1 means peeling. =1 indicates stability.		
J	-1 indicates stability.	1	

6	Hengwei 1		
7	Check Digit		

2.4 command d to read the control status of the specified instrument.

Command (example address is a):

Command segment	XON	ADD	CMD	СНК	XOFF
Hex	02	41			03
format					
Ascii		Α	D		
format					

Slave answer:

	VON	400	CNAD	DATA	CLIK	VOEE
content	XON	ADD	CMD	i jkl	СНК	XOFF
Hex	02	41				03
format	02	41				03
Ascii		A	d			
format						

DATA answered by slave means:

IJKL-	IJKL—Status of external input port and output relay of instrument									
The meanir	ng of each binary bit of I		The meani	ng of each binary bit of j						
BIT number	Work parameters		BIT number	Work parameters						
(bit)			(bit)							
0	=1 indicates that the No.1		0	=1 indicates that the No.7						
	external input has a			external input has a						
	signal.			signal.						
1	=1 indicates that external		1	=1 indicates that the No.8						
	input No.2 has a signal.			external input has a						
				signal.						
2	=1 indicates that external		2	=1 indicates that relay						
	input No.3 has a signal.			No. 1 works.						
3	=1 indicates that the No.4		3	=1 indicates that relay						
	external input has a			No. 2 works.						
	signal.									

4	=1 indicates that there is	4	=1 indicates that relay
	a signal at external input		No. 3 works.
	No. 5.		
5	=1 indicates that the No.6	5	=1 indicates that relay
	external input has a		No. 4 works.
	signal.		
6	Hengwei 1	6	Hengwei 1
7	Check Digit	7	Check Digit
The meanir	ng of each binary bit of k	The meani	ng of each binary bit of l
BIT number	Work parameters	BIT number	Work parameters
(bit)		(bit)	
0	=1 indicates that relay	0	=1 indicates that relay
	No.5 works.		No.11 works.
1	=1 indicates that relay	1	=1 indicates that relay
	No.6 works.		No. 12 works.
2	=1 indicates that relay	2	=1 indicates that relay
	No.7 works.		No. 13 works.
3	=1 indicates that relay	3	=1 indicates that relay
	No. 8 works.		No. 14 works.
4	=1 indicates that relay	4	=1 indicates that relay
	No. 9 works.		No.15 works.
5	=1 indicates that relay	5	=1 indicates that relay
	No. 10 works.		No. 16 works.
6	Hengwei 1	6	Hengwei 1
7	Check Digit	7	Check Digit

2.5 command k to perform a key function of the specified instrument.

Command (example address is a):

Command	XON	ADD	CMD	DATA	СНК	XOFF
segment	XON	ADD	CIVID	XX	СПК	XUFF
Hex	02	41				03
format						
Ascii		Α	K			
format						

Slave answer:

content	XON	ADD	CMD	DA	λΤΑ	СНК	XOFF
Hex	02	41					03
format	02	71					05
Ascii		A	k	_	1-		
format				О	k		

2.6 Command Q to clear the accumulated data and consumption data of the specified instrument.

Command (example address is a):

Command segment	XON	ADD	CMD	СНК	XOFF
Hex	02	41			03
format					
Ascii		Α	Q		
format					

Slave answer:

content	XON	ADD	CMD	DA	ιΤΑ	СНК	XOFF
Hex format	02	41					03
Ascii format		A	q	О	k		

2.7 command t to read the parameters of the specified instrument.

Command (example address is a):

Command	VON	400	CNAD	DATA	CHIK	VOEE
segment	XON	ADD	CMD	Txxx	СНК	XOFF
Hex	02	41	56			03
format						
Ascii		Α	U			
format						

Slave answer:

contont	VON	ADD	CMD	DATA		CHV	XOFF
content	XON	ADD	CMD	XXX	ddddddd	СНК	XUFF
Hex	02	41					03
format	02	41					03
Ascii		A	t				
format							

2.8 Command U to set the parameters of the specified instrument.

Command (example address is a):

Command	VON	A D D	CMD	DATA	CHK	XOFF
segment	XON	ADD	CMD	xxxddd	СНК	XUFF
Hex	02	41	56			03
format						
Ascii		Α	U			
format						

Slave answer:

content	XON	ADD	CMD	DA	ιΤΑ	СНК	XOFF
Hex	02	41	62				03
format	02	11	02				
Ascii		A	u		1,		
format				0	k		

2.9 Command V sets the date and time of the specified instrument.

Command (example address is a):

Command	VON	4DD	CNAD	DATA	CHIK	VOLL
segment	XON	ADD	CMD	yymmddhhnnss	СНК	XOFF
Hex	02	41	56		52	03
format						
Ascii		Α	V	171201205730		
format						

Slave answer:

content	XON	ADD	CMD	DA	ιΤΑ	СНК	XOFF
Hex format	02	41	62				03
Ascii format		A	V	0	k		

2.10 command w to set the specified instrument process execution pointer.

Command (example address is a):

Command	VON	400	CMD	DATA	CHIV	VOEE
segment	XON	ADD	CMD	ddd	CHK	XOFF
Hex	02	41	57			03
format						
Ascii		Α	W			
format						

Slave answer:

content	XON	ADD	CMD	DA	ιΤΑ	СНК	XOFF
Hex format	02	41	61				03
Ascii format		A	W	0	k		

Appendix 2 Command of Continuous Sending Mode

When the communication parameter F06 is set to 4,5,6,7, it is the continuous transmission mode. At this time, F07 no longer represents the instrument address, but represents the information content and format of continuous transmission. The time interval between two consecutive strings of data is 35 ms.

The sending format is as follows:

parameter F07	Format name	Content format	remarks
1	Top loose format 1	(STX)Aa±nnnnnnptttttteff(CHK)(ETX)	The return of a command
2	Yaohua old D2+ format	=51.0700=51.0700	8 bytes per frame
3	/		
4	TOLEDO standard format		Without checksum
5	TOLEDO standard format		With checksum
6	705 format	ST,GS,+0012.34,kg(CRLF) US,GS,-002000,kg(CRLF)	
7	Top loose format 2	(STX)AA±nnnnnptttttteff(CHK)(ETX)	
8	/		
9	/		
10	/		
11	Taiwan Province C-8500TS UMC600 format	(STX)- 12.34KGM(CRLF)	
12	XK3190-A9 mode	(STX)-002000PCC(ETX)	Yaohua
13	/		
14	Hbwe2110 format	(STX)- 12.34G(ETX) (STX)12.34M(ETX)	
15	Yaohua new D2+ format	=51.07000=51.07000	9 bytes per frame
16	A8MD dynamic table format	[7F7F7F7F7F02]npss111222xxxC	
17	/		
18	RI5000 format	(STX)- 12.34G(CRLF) (STX) 12.34M(CRLF)	
19	HB8212 format	(STX)- 12.34 kg GRM(CRLF) (STX) 12.34 kg GR (CRLF)	Formosa plastics
20	EX2001 format	ST,GS,+0012.34kg(CRLF)	Similar to 1705

		format, there is no comma of 15th word.
21	Simplified Toledo format	With checksum
22	Simplified Toledo format	Without checksum
23	Yancheng Asano format	The same as TOLEDO simplified format checksum is changed to [OA]

Appendix 3: Continuous Transmission Format

Note: Please contact us if you need the details of continuous sending format.

Appendix 3 Modbus RTU communication function code table

Functional address		meaning	Register attribute
4x0000	Parame	ter: P01	4 bytes, signed, read/write
4x0002	Parame	ter: PO2	4 bytes, signed, read/write
		•••••	
4x0176	Parame	ter: P89	4 bytes, signed, read/write
4x0178	Parame No.2)	ter: p90 (gross weight of scale	4 bytes, signed, read-only
4x0180	Parame	ter: p91 (net weight of scale No.2)	4 bytes, signed, read-only
4x0182	Parame	ter: p92 (tare weight of scale No.2)	4 bytes, signed, read/write
4x0184	Parame	ter: P93	4 bytes, signed, read/write
4x0186	Parame	ter: P94 (pulse port count value)	4 bytes, signed, read/write
4x0188	Parame	ter: p95 (No.1 4-20mA output value)	4 bytes, signed, read-only
4x0190	Parame	ter: p96 (No.2 4-20mA output value)	4 bytes, signed, read-only
4x0192	Parame	ter: P97(4-20mA input value)	4 bytes, signed, read-only
4x0194	Parame	ter: P98	4 bytes, signed, read/write
4x0196	Parame	ter: P99	4 bytes, signed, read/write
	Bit 1	Output relay OUT1 status	
/ _T 0100	Bit 2	Output relay OUT2 status	2 bytes, unsigned,
4x0198	•••		read-only
	Bit 16 Output relay OUT16 status		
	Bit 1 Enter IN1 status		
	Bit 2	Enter IN2 status	
4x0199	•••		2 bytes, unsigned,
2-2-2	Bit 12	Enter IN12 status	read-only
	Bit 13	Output relay OUT17 status	
	Bit 14	Output relay OUT18 status	

	Bit 15 Output relay OUT19 status	
	Bit 16 Output relay OUT20 status	
		2 bytes, unsigned,
4x0200	Output value of analog quantity (4-20mA)	read-only
4 0201	Total Marie I Marie	2 bytes, unsigned,
4x0201	Last stored item	read-only
4x0202	Net weight of scale 1	4 bytes, signed,
4x0202	Net weight of Scale 1	read-only
4x0204		4 bytes, signed,
4x0204		read-only
4x0206	Gross weight of scale 1	4 bytes, signed,
4x0200	oross weight or scare r	read-only
4x0208		4 bytes, signed,
4x0206		read-only
4x0210	Current AD value of scale No.1	4 bytes, unsigned,
4x0210	current AD value of scale No. 1	read-only
4x0212	Panel number (see Note 3 for details)	2 bytes, unsigned,
4X0212	Taner number (see Note 3 for details)	read/write
4x0213	Accumulated times of storage	2 bytes, unsigned,
4X0213	Accumulated times of storage	read/write
4x0214	Grading value	2 bytes, unsigned,
430214	Grading value	read/write
4x0215	Low byte: weight decimal places, high	2 bytes, unsigned,
430213	byte: flow decimal places.	read/write

Modbus RTU function code table (continued 1)

Functional address	meaning	Register attribute
4x0216	Zero setting range	2 bytes, unsigned, read/write
4x0217	Zero tracking range	2 bytes, unsigned, read/write
4x0218	Recipe number (formerly process number)	2 bytes, unsigned, read/write
4x0219	Judging range	2 bytes, unsigned, read/write
4x0220	Calibration coefficient of scale No.1	4 bytes, unsigned, read/write
4x0222	Accumulated weight of stored	4 bytes, unsigned, read/write
4x0224	Zero point calibration AD value of No.1 scale	4 bytes, unsigned, read/write

	T	4.1	
4x0226	Maximum range	4 bytes, unsigned, read/write	
	Remote control trigger pointer (can't		
4x0228	write continuously, can only write once)	2 bytes, unsigned, write only	
	write continuously, can only write once	2 bytes, unsigned,	
4x0229	Working state of 1# process executor	read-only	
		2 bytes, unsigned,	
4x0230	Working state of 2# process executor	read-only	
		2 bytes, unsigned,	
4x0231	Working state of 3# process executor	read-only	
		2 bytes, unsigned,	
4x0232	Working state of 4# process executor	read-only	
		2 bytes, unsigned,	
4x0233	Working state of 5# process executor	read-only	
		2 bytes, unsigned,	
4x0234	Working state of 6# process executor	read-only	
		2 bytes, unsigned,	
4x0235	Working state of 7# process executor	read-only	
		2 bytes, unsigned,	
4x0236	Working state of 8# process executor	read-only	
		2 bytes, unsigned,	
4x0237	Working state of 9# process executor	read-only	
		2 bytes, unsigned,	
4x0238	Working state of 10# process executor	read-only	
		2 bytes, unsigned,	
4x0239	Working state of 11# process executor	read-only	
		2 bytes, unsigned,	
4x0240	Working state of 12# process executor	read-only	
		2 bytes, unsigned,	
4x0241	Display panel digital tubes DSSP1, DSSP2	read-only	
		2 bytes, unsigned,	
4x0242	Display panel digital tubes DSSP3, DSSP4	read-only	
4.6515	D. 1 1111 DOOD TOOD	2 bytes, unsigned,	
4x0243	Display panel digital tubes DSSP5, DSSP6	read-only	
4 6244	D. 1 1 1 1 1 1 1 DOODE DOODE	2 bytes, unsigned,	
4x0244	Display panel digital tube DSSP7, DSSP8	read-only	
4x0245	Diala and I to I to I poope poope	2 bytes, unsigned,	
	Display panel digital tube DSSP9, DSSP10	read-only	
4x0246	Diala and I to I to Doop to Doop to	2 bytes, unsigned,	
	Display panel digital tube DSSP11, DSSP12	read-only	
4x0247	Diaglas was allighted and December December	2 bytes, unsigned,	
	Display panel digital tube DSSP13, DSSP14	read-only	
1	I .	ı.	

4x0248	Output status (DO-D15):IN1-IN8,OUT1-OUT8	2 bytes, unsigned,	
4x0246	output status (DO D13).INT ING, OUTT OUTS	read-only	
4x0249	(DO-D15): Whether the formula can be set, IO test, zero position 2 Zero position, stable 2, stable 1, peeled 2, peeled 1 OUT9-OUT16	2 bytes, unsigned, read-only	
4x0250	Current AD value of scale No.2	4 bytes, signed, read-only	
4x0252	Zero point calibration AD value of No. 2 scale	4 bytes, unsigned, read/write	
4x0254	Calibration coefficient of No.2 scale	4 bytes, unsigned, read/write	
4x0262	Calibration code 1	2 bytes, unsigned, write only	
4x0263	Calibration code 2	2 bytes, unsigned, write only	
4x0264	Calibration code 3	2 bytes, unsigned, write only	
4x0265	Number of sensors	2 bytes, unsigned, read/write	
4x0512	Calibration coefficient of No.1 sensor	4 bytes, unsigned, read/write	
4x0514	Calibration coefficient of No. 2 sensor	4 bytes, unsigned, read/write	
4x0516	Calibration coefficient of No.3 sensor	4 bytes, unsigned, read/write	
4x0542	Calibration coefficient of No.16 sensor	4 bytes, unsigned, read/write	
4x0768	Internal code of No.1 sensor	4 bytes, signed, read-only	
4x0770	Internal code of No.2 sensor	4 bytes, signed, read-only	
		•••••	
4x0798	Internal code of No.16 sensor	4 bytes, signed, read-only	

4x1024	Empty scale code of No.1 sensor	4 bytes, signed, read/write
4x1026	Empty scale code of No.2 sensor	4 bytes, signed, read/write
4x1054	Empty scale code of No.16 sensor	4 bytes, signed, read/write

Appendix 1: Modbus RTU function codes

Note: The address of the register is orange, indicating that it was adjusted in

2016. Please check it again before using it.

Note: The maximum number of bytes read in a block is 120.

Note: The register (4x0212) is the panel key number, and writing a number into this register indicates that a key is pressed, which can be a physical key or an internal function key. See the following table for details:

serial number	Schematic value	Actual written value	Corresponding function
1	128+1	129	Press the [†] key of the short
			instrument.
2	128+2	130	Press the 【↓】 key of the short
			instrument.
3	128+3	131	Press the [←] key of the short
			instrument.
4	128+4	132	Press the [→] key of the short
			instrument.
5	128+5	133	Press the [Enter] key of the short
			instrument.
6	128+6	134	Press the [Cancel] key of the short
			instrument.
7	128+7	135	print
8	128+8	136	Print report
9	128+9	137	Print custom documents
10	128+10	138	1# scale calibration
11	128+11	139	Press the [†] key of the long meter,
			which is equivalent to the [Stop] key.
12	128+12	140	This function is not available.
13	128+13	141	Press the [←] key of the instrument

			·
			for a long time, which is equivalent
			to the [Clear] key.
14	128+14	142	Press the [→] key of the instrument,
			which is equivalent to the [Pxx] key.
15	128+15	143	Press the [Enter] key of the
			instrument, which is equivalent to the
			[Fxx] key.
16	128+16	144	This function is not available.
17	128+20	145	2# Scale Calibration
18	256+0	146	Exit IO test
19	256+1	147	Enter IO test.
20	256+1	147	Pass OUT1
21	256+2	148	Pass OUT2
•••••			
39	256+20	276	OUT20
40	288+1	289	Off 1
41	288+2	290	Off 2
•••••			
59	288+20	306	OUT20

Appendix 2: Values and Functions of Register (4x0212)

Revision history

version	date	Revision content	reviser
1. 0. 0	2017-11-24	 Several illustrations were modified to adapt to PDF format. All pictures and tables have been added with a number for easy indexing. Unified the format of each interface description. Some wording has been modified to make it easier for users to understand. 	Bao Feiping
1.0.1	2017-11-25	1. Complete all the illustrations (there are still a few photos that haven't been put in) 2. Size of display panel and touch screen to be verified.	Bao Feiping
1.0.2	2017-11-27	 The physical drawing of host and display panel has been added. The layout of instrument interface is independent. The title of the subsection after the big section of the text adopts Arabic numerals, such as 2.1, 2.1.1. 	Bao Feiping
1. 0. 3	2017-12-01	 Added content. Some pictures have been added. 	Bao Feiping
1.1.0	2017-12-01	 Basic stereotypes, all large pieces of content have been modified. The top loose agreement still needs to be improved. Some contents, such as display code, need to be improved. Continuous sending mode removes the specific protocol content. 	Bao Feiping
1. 1. 1	2017-12-05	1. Modified the opening size diagram of touch screen. 2. 4 Add a description of the wire connection method (orange for emphasis)	Bao Feiping
1.1.2	2018-02-08	Some errors have been corrected.	Bao Feiping

What needs to be written in the future:

Connection of serial port of printer